проективное алгебраическое многообразие

проективное алгебраическое многообразие
праектыўная алгебраічная мнагастайнасць

Русско-белорусский математический словарь. 2013.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "проективное алгебраическое многообразие" в других словарях:

  • Алгебраическое многообразие — Существуют различные типы алгебраических многообразий: аффинные многообразия, проективные многообразия, квазипроективные многообразия. Содержание 1 Аффинные многообразия 2 Проективные и к …   Википедия

  • АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — один из основных объектов изучения алгебраич. геометрии. Современное определение А. м. над полем kкак приведенной схемы конечного типа над полем kпретерпело длительную эволюцию. Классич. определение А. м. ограничивалось аффинными и проективными… …   Математическая энциклопедия

  • ПОЛНОЕ АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — обобщение понятия компактного комплексного алгебраич. многообразия. Многообразие Xназ. полным, если для любого многообразия Yпроекция является замкнутым морфизмом, т. е. переводит замкнутые (в топологии Зариского) подмножества в замкнутые… …   Математическая энциклопедия

  • ПОЛЯРИЗОВАННОЕ АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — пара (V,x)> где V полное гладкое многообразие над алгебраически замкнутым полем k,| из Pic V/PicoV класс нек рого обильного обратимого пучка, PicoV связная компонента абелевой схемы Пикара Pic V. В случае, когда V абелево многообразие,… …   Математическая энциклопедия

  • ЧЖОУ МНОГООБРАЗИЕ — Чжоу схема, алгебраическое многообразие, точки к рого параметризуют все алгебраич. подмногообразия Xразмерности r и степени dпроективного пространства Р n. В произведении где двойственное к Р n проективное пространство, параметризующее… …   Математическая энциклопедия

  • ВЕКТОРНОЕ АЛГЕБРАИЧЕСКОЕ РАССЛОЕНИЕ — морфизм многообразий , локально (в Зариского топологии).устроенный как проекция прямого произведения на , причем склейка сохраняет послойно структуру векторного пространства. При этом Еназ. пространством расслоения, базой, а п рангом (или… …   Математическая энциклопедия

  • КВАДРИКА — 1) К. поверхность 2 го порядка. В трехмерном пространстве (проективном, аффинном или евклидовом) К. есть множество точек, однородные координаты х 0, х 1, х 2, х 3 к рых (относительно проективной, аффинной или декартовой системы координат)… …   Математическая энциклопедия

  • Поливектор — Поливектор, р вектор, векторного пространства   элемент некоторой внешней степени пространства над полем . p вектор может пониматься как кососимметризованный р раз контравариантный тензор на . 2 вектор также называют бивектором, а 3 вектор… …   Википедия

  • Бивектор — Поливектор, р вектор, векторного пространства V элемент некоторой внешней степени Λp пространства V над полем k. p вектор может пониматься как кососимметризованный р раз контравариантный тензор на V. 2 вектор также называют бивектором. Свойства… …   Википедия

  • Квадрика — В алгебраической геометрии, квадрика проективное алгебраическое многообразие, которое можно задать однородным квадратным уравнением. 2) Квадрика поверхность 2 го порядка. В трехмерном пространстве (проективном, аффинном или евклидовом) квадрика… …   Википедия

  • АЛГЕБРАИЧЕСКАЯ КРИВАЯ — алгебраическое многообразие размерности 1. А. к. является наиболее изученным объектом алгебраической геометрии. В дальнейшем под А. к. понимается, как правило, неприводимая А. к. над алгебраически замкнутым полем. Наиболее простым и интуитивно… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»